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A B S T R A C T   

Background: Trigeminal neuralgia, a severe chronic neuropathic pain disorder, is widely believed to be amenable 
to surgical treatments. Nearly 20% of patients, however, do not have adequate pain relief after surgery. Objective 
tools for personalized pre-treatment prognostication of pain relief following surgical interventions can minimize 
unnecessary surgeries and thus are of substantial benefit for patients and clinicians. 
Purpose: To determine if pre-treatment regional brain morphology-based machine learning models can prog-
nosticate 1 year response to Gamma Knife radiosurgery for trigeminal neuralgia. 
Methods: We used a data-driven approach that combined retrospective structural neuroimaging data and support 
vector machine-based machine learning to produce robust multivariate prediction models of pain relief following 
Gamma Knife radiosurgery for trigeminal neuralgia. Surgical response was defined as ≥ 75% pain relief 1 year 
post-treatment. We created two prediction models using pre-treatment regional brain gray matter morphology 
(cortical thickness or surface area) to distinguish responders from non-responders to radiosurgery. Feature se-
lection was performed through sequential backwards selection algorithm. Model out-of-sample generalizability 
was estimated via stratified 10-fold cross-validation procedure and permutation testing. 
Results: In 51 trigeminal neuralgia patients (35 responders, 16 non-responders), machine learning models based 
on pre-treatment regional brain gray matter morphology (14 regional surface areas or 13 regional cortical 
thicknesses) provided robust a priori prediction of surgical response. Cross-validation revealed the regional 
surface area model was 96.7% accurate, 100.0% sensitive, and 89.1% specific while the regional cortical 
thickness model was 90.5% accurate, 93.5% sensitive, and 83.7% specific. Permutation testing revealed that 
both models performed beyond pure chance (p < 0.001). The best predictor for regional surface area model and 
regional cortical thickness model was contralateral superior frontal gyrus and contralateral isthmus cingulate 
gyrus, respectively. 
Conclusions: Our findings support the use of machine learning techniques in subsequent investigations of chronic 
neuropathic pain. Furthermore, our multivariate framework provides foundation for future development of 
generalizable, artificial intelligence-driven tools for chronic neuropathic pain treatments.   

Abbreviations: ML, machine learning; SBS, sequential backward selection; SVM, support vector machine. 
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1. Introduction 

Approximately 6–8% of the population suffers from chronic neuro-
pathic pain (Smith and Torrance, 2012), with a staggering impact on 
society and consumption of healthcare resources (Schaefer et al., 2014). 
Chronic pain can be accompanied by increasing complications/side ef-
fects arising from over-reliance on medications and unsuccessful surgi-
cal procedures. Personalized tools for the prediction of pain relief would 
provide significant benefit when considering surgical treatment. Tri-
geminal neuralgia is the most frequently occurring orofacial chronic 
neuropathic pain (Koopman et al., 2009). Recent studies using advanced 
imaging technology have revealed trigeminal nerve and brain-level 
neural abnormalities in trigeminal neuralgia (Desouza et al., 2013; 
DeSouza et al., 2014; Zhong et al., 2018) within central nervous system 
regions important for the sensory and affective processing of pain. While 
surgical treatment can be highly effective, approximately 20–30% of 
patients do not achieve significant pain relief and require multiple, 
repeated interventions (Hodaie and Coello, 2013). 

Prior work using advanced brain imaging has pinpointed micro-
structural differences between responders and non-responders (DeSouza 
et al., 2015; Hung et al., 2019, 2017; Tohyama et al., 2019). For 
instance, assessment of diffusivity metrics pointed to non-responders 
having microstructural neural abnormalities located more centrally 
within the neuroaxis which are predictive of treatment outcome (e.g. 
axial and radial diffusivity abnormalities within the trigeminal nerve 
pontine segment) (Hung et al., 2017). Construction of accurate pre- 
treatment prognostication tools—potentially utilizing biomarkers spe-
cific to non-responders—can capture brain imaging differences and 
potentially predict treatment outcome. In this study, using machine 
learning (ML) models, we aimed to investigate if pre-treatment regional 
brain gray matter morphology (regional cortical thickness or regional 
surface area) can serve as effective pre-treatment predictors of 1 year 
response to surgical intervention for trigeminal neuralgia. We hypoth-
esized that these brain-based models will exhibit superior prognostica-
tion abilities than prior nerve-based models (Hung et al., 2017; Tohyama 
et al., 2019). 

2. Methods 

2.1. Patient recruitment 

51 patients with trigeminal neuralgia defined by the International 
Classification of Headache Disorders 3rd Edition (International Head-
ache Society, 2018) recruited locally at our surgical center were 
included in this study. Sample size for ML study of chronic pain is 
generally set by precedent. In this regard, our sample size of 51 is 
comparable to the literature (Lee et al., 2019; López-Solà et al., 2017; 
Zhong et al., 2018). All patients were medically refractive and treated 
with Gamma Knife radiosurgery as their first surgical treatment for 
unilateral trigeminal neuralgia. Restricting our study to one surgery 
helps minimize confounding effects from having multiple types of in-
terventions on prognostication of treatment outcome. Research study 
approval in accordance with the Declaration of Helsinki was obtained 
from our institutional research ethics board with informed patient 
consent waived for retrospective cross-sectional brain imaging studies. 

2.2. Automated regional surface area and regional cortical thickness 
extractions 

We used a 3 Tesla GE Signa HDx magnetic resonance imaging 
scanner (General Electric Healthcare, Milwaukee) with an 8-channel 
head coil to acquire anatomical T1-weighted images from all patients 
(fast-spoiled gradient echo, TE = 5.1 ms, TR = 12.0 ms, flip angle = 20◦, 
voxel size = 0.86 mm × 0.86 mm × 1.00 mm, 256 × 256 matrix, field of 
view = 22 cm, 146 slices). Between 2008 and 2017, we collected a 
single, pre-treatment T1-weighted image for each patient. FreeSurfer 

(version 6.0, http://surfer.nmr.mgh.harvard.edu), was then used to 
automatically extract pre-treatment regional surface area and regional 
cortical thickness measurements from all 68 brain regions defined in the 
Desikan-Killiany atlas (Desikan et al., 2006). In this study, we extracted 
regional surface area and regional cortical thickness according to Free-
Surfer’s definitions. Regional surface area is calculated along the brain 
gray matter/white matter interface while regional cortical thickness is 
calculated as the distance between gray matter/white matter interface 
and gray matter/cerebrospinal fluid interface. Following extraction, all 
gray matter measures were standardized to unit variance and labeled 
with respect to pain laterality (ipsilateral or contralateral) to facilitate 
subsequent ML analyses. Quality checks were conducted to ensure there 
were no missing data from FreeSurfer automatic extractions. All subjects 
were successfully processed. 

2.3. Surgical treatment for pain and treatment response grouping 

We performed Gamma Knife radiosurgery to treat trigeminal neu-
ralgia pain using either Elekta 4C© or Elekta Perfexion© systems 
(Elekta, Stockholm, Sweden) and 4 mm collimators. For all patients, 
according to best practices, a single 80 Gy radiation isodose was deliv-
ered to the cisternal segment of the symptomatic trigeminal nerve. To 
minimize adverse effects, brainstem radiation was constricted to 15 Gy 
to 1 mm3. Based on prior publications (DeSouza et al., 2015; Li et al., 
2004; Tohyama et al., 2019), responder status was determined on a 75% 
threshold set at 1-year post-treatment compared to pre-treatment levels 
with responders exhibiting ≥ 75% pain intensity reduction and non- 
responders demonstrating < 75% pain intensity reduction. All pain in-
tensity measurements were conducted on a 11-points numerical rating 
scale (from 0 denoting complete absence of pain to 10 defined as the 
worst pain imaginable) (Hawker et al., 2011). 

2.4. Machine learning 

We constructed two separate families of ML prediction models—one 
involving 68 pre-treatment regional surface areas and the other 
involving 68 pre-treatment regional cortical thicknesses as input fea-
tures. Separate families of ML models were constructed as regional 
surface area and regional cortical thickness are mathematically 
orthogonal to each other and can provide independent insights into 
morphological changes in the brain. More specifically, regional surface 
area is measured on a single brain interface while regional cortical 
thickness is measured as the average distance between two non- 
overlapping brain interfaces. We implemented all ML models using 
Scikit-learn (0.20.1, http://scikit-learn.org/stable/index.html)—a Py-
thon library for ML. We chose support vector machine (SVM) as the ML 
technique for this study as SVM does not require extensive computa-
tional resources to determine the hyperplane that best separates an 
outcome variable within a multi-dimensional space. A linear kernel was 
used for all SVM models with the following hyperparameters (C = 1, 
gamma = 1/number of features, tolerance = 0.001). For dimensionality 
reduction, we used the sequential backward selection (SBS) procedure 
implemented in Mlxtend (0.17.0, http://rasbt.github.io/mlxtend) 
which can effectively eliminate features not useful for prediction of the 
outcome variable to arrive at improved prediction accuracies. To ensure 
our ML models are generalizable, we obtained estimates of out-of- 
sample model accuracy, sensitivity, and specificity using a stratified 
10-fold cross-validation procedure which has been shown to be useful 
for ML problems with potentially imbalanced outcome classes. We 
selected stratified 10-fold cross-validation as it has been shown to be 
more reliable than other cross-validation procedures such as leave-one- 
out which can lead to overly variable estimates of ML model perfor-
mance (Varoquaux et al., 2017). 

Our ML framework included SVM and SBS over five steps to arrive at 
an optimal SVM model for each family (Fig. 1). First, we constructed a 
baseline SVM model using the complete set of 71 input features 

P.S.-P. Hung et al.                                                                                                                                                                                                                              

http://surfer.nmr.mgh.harvard.edu
http://scikit-learn.org/stable/index.html
http://rasbt.github.io/mlxtend


NeuroImage: Clinical 31 (2021) 102706

3

including 68 regional brain gray matter morphological measures 
(regional surface areas or regional cortical thicknesses), age, sex, and 
pain laterality. Second, we applied the SBS procedure to create a 
collection of candidate SVM models. Third, from SBS-generated collec-
tion of candidate SVM models, we identified the optimal SVM model 
which had maximal stratified 10-fold cross-validated prediction accu-
racy and minimal number of input features. Fourth, we used permuta-
tion testing (2000 permutations) to ensure that the optimal model 
performed at a prediction accuracy beyond pure chance (p < 0.05). 
Finally, we consulted the spatial correspondence recently reported by 
Alexander-Bloch et al. (Alexander-Bloch et al., 2018) between Desikan- 
Killiany structural brain atlas (Desikan et al., 2006) and Yeo 7 functional 
brain network atlas (Yeo et al., 2011) to identify which functional brain 
network each feature/predictor belonged to. 

2.5. Post-hoc Bonferroni corrected Student’s t-tests 

Multiple post-hoc Bonferroni corrected Student’s t-tests were con-
ducted between trigeminal neuralgia patients against sex- and age- 
matched healthy controls to characterize the directionalities of 
regional gray matter morphology alterations contributing to each 
optimal treatment response model. These comparisons were conducted 
against 51 age- and sex-matched healthy control subjects without known 
history or diagnosis of neuropsychiatric and pain disorders from the 
Cam-CAN database (Taylor et al., 2017). For the regional surface area 
model, Bonferroni correction was conducted for 28 simultaneous 

comparisons (14 features by 2 pain laterality) while for the regional 
cortical thickness model, Bonferroni correction was conducted for 26 
simultaneous comparisons (13 features by 2 pain laterality). 

2.6. Data availability statement 

Anonymized data and code supporting study findings is available 
from the corresponding author upon reasonable request. Machine 
learning framework code is available on GitHub (https://github.com/h 
ungs/GMSxPredict). 

3. Results 

3.1. Patient demographics 

Of the 51 patients included in the study, all were diagnosed with 
trigeminal neuralgia (33 females, 18 males). 21 patients exhibited left- 
sided pain while 30 patients exhibited right-sided pain. Mean patient 
age at the time of treatment was 62.1 ± 13.6 standard deviation years. 
Pre-treatment pain intensity was reported on average at 9.0 ± 1.5 
standard deviation out of 10 points. The mean pain intensity was 
reduced to 2.2 ± 3.4 standard deviation out of 10 points one year after 
Gamma Knife radiosurgery. On an individual patient basis, using a 
response criterion of ≥ 75% post-treatment pain reduction, 35 of 51 
patients were classified as responders while the remaining 16 were 
classified as non-responders. For more information, please refer to 

Fig. 1. Brain morphology-driven machine learning framework to predict 1 year response to treatment for chronic neuropathic pain. Machine learning techniques 
were used to create multivariate models capable of predicting 1 year response to surgery for individuals with trigeminal neuralgia. An initial model was first 
constructed from either cortical thickness or surface area features along with patient age, sex, and pain laterality. A collection of candidate support vector machine 
(SVM) models was then constructed using sequential backward selection for feature selection. To address the potential issue of model overfitting, model general-
izability (accuracy, sensitivity, and specificity) were assessed via stratified 10-fold cross-validation and permutation testing. Our framework ultimately identified the 
SVM model with the highest cross-validated accuracy and lowest number of features/predictors as the optimal model. To better understand the functional relevance 
of the predictors included in the optimal model, we then consulted Alexander-Bloch et al.’s work which related Desikan-Killiany structural brain atlas with Yeo 7 
functional brain network. 
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detailed patient demographics in Table 1. Additional pain characteris-
tics are detailed in Supplemental table 1. Age and sex of matched 
healthy controls can be found in Supplemental table 2. 

3.2. Regional surface area model was highly predictive of 1 year pain 
relief 

The regional surface area model predicted responders from non- 
responders with a statistically significant, cross-validated, testing ac-
curacy of 96.7% (49.30/51.00) (Fig. 2). In addition, the model also 
achieved a cross-validated sensitivity of 100.0% (35.36/35.36) and 
cross-validated specificity of 89.1% (13.94/15.64). The area under the 
cross-validated receiver operating characteristic curve for this model 
was 0.97 ± 0.11. This model identified regional surface areas from 14 
brain regions spanning both hemispheres as relevant predictors of 
treatment response. Patient age, sex, and pain laterality were found to be 
irrelevant to treatment response. Regional surface area from the default 

mode network, especially the contralateral superior frontal gyrus, 
appeared to be the best predictor of 1 year response to surgery for tri-
geminal neuralgia (Fig. 3). The remaining predictors in this model 
included: bilateral regional surface areas from pars triangularis and 
superior temporal gyrus; ipsilateral regional surface areas from ento-
rhinal cortex, precentral gyrus, caudal middle frontal gyrus, peri-
calcarine cortex, paracentral lobule, superior parietal gyrus, and 
parahippocampal gyrus; and contralateral regional surface areas from 
caudal anterior cingulate gyrus and fusiform gyrus. Post-hoc group-level 
Bonferroni-corrected Student’s t statistics revealed that these predictors 
remained at levels comparable with healthy control levels. 

3.3. Regional cortical thickness model was highly predictive of 1 year pain 
relief 

The regional cortical thickness model prognosticated responders 
from non-responders at a statistically significant, cross-validated, testing 

Table 1 
Detailed subject demographics.  

ID Sex Age Pain laterality Branch Pre-treatment pain intensity Post-treatment pain intensity Group Pain dura. 

P01 F 39 Left V2, V3 5.5 0 Res 7 
P02 F 46 Right V1, V2, V3 10 0 Res 4 
P03 F 47 Right V1, V2, V3 10 0 Res 4 
P04 F 49 Right V1, V2 10 0 Res 5 
P05 F 49 Left V1, V2, V3 10 0 Res 3 
P06 F 54 Left V3 10 0 Res 8 
P07 F 56 Right V3 10 0 Res 23 
P08 F 58 Right V1, V2, V3 10 0 Res 3 
P09 F 60 Right V2, V3 7.5 1 Res 1.5 
P10 F 62 Left V2, V3 10 0 Res 10 
P11 F 65 Right V2 10 0 Res 30 
P12 F 66 Left V3 10 0 Res 7 
P13 F 67 Left V3 10 0 Res 3 
P14 F 71 Left V2, V3 10 0 Res 6 
P15 F 74 Right V2, V3 7 0 Res 8 
P16 F 75 Right V3 9.5 0 Res 2.5 
P17 F 75 Right V2, V3 8.5 0 Res 2 
P18 F 79 Right V2 10 0 Res 3 
P19 F 79 Right V3 10 0 Res 20 
P20 F 80 Right V3 7.5 0 Res 3 
P21 F 83 Left V1 10 0 Res 9 
P22 F 86 Right V3 8 0 Res 2 
P23 M 32 Left V1, V2 10 0 Res 2 
P24 M 38 Right V2, V3 10 0 Res 1.5 
P25 M 41 Right V1, V2 10 0 Res 2.5 
P26 M 43 Left V2 10 2 Res 1 
P27 M 59 Right V1, V2 10 0 Res 12 
P28 M 59 Right V3 10 0 Res 3 
P29 M 62 Right V2, V3 10 0 Res 9 
P30 M 64 Right V3 7 0 Res 2 
P31 M 66 Left V3 9.5 0 Res 5 
P32 M 72 Right V2, V3 10 1.75 Res 12 
P33 M 79 Left V2, V3 10 0 Res 10 
P34 M 85 Left V1, V2 8 0 Res 20 
P35 M 86 Left V2 8.5 0 Res 29 
P36 F 36 Left V2, V3 7.5 10 NRes 5 
P37 F 45 Right V1, V2 10 10 NRes 4 
P38 F 47 Right V1, V2, V3 10 3 NRes 3 
P39 F 56 Left V1, V2 6.5 7.75 NRes 3 
P40 F 59 Right V2, V3 9.5 2.5 NRes 2 
P41 F 60 Right V3 8 7 NRes 19 
P42 F 63 Left V2, V3 10 8 NRes 25 
P43 F 65 Right V3 10 8 NRes 1 
P44 F 66 Right V2, V3 10 3.5 NRes 10 
P45 F 69 Left V2, V3 9.5 4.5 NRes 8 
P46 F 73 Right V2, V3 10 6 NRes 31 
P47 M 59 Right V2 10 7 NRes 3 
P48 M 62 Right V1, V2, V3 8 8 NRes 20 
P49 M 65 Left V3 8 8 NRes 4 
P50 M 67 Left V1, V2 8 6 NRes 6 
P51 M 67 Left V2, V3 7.5 10 NRes 7 

Abbreviations: L = Left, R = Right, V1 = ophthalmic branch of the trigeminal nerve, V2 = maxillary branch of the trigeminal nerve, V3 = mandibular branch of the 
trigeminal nerve, Res = responder, NRes = non-responder, Pain dura. = pain duration in years. 

P.S.-P. Hung et al.                                                                                                                                                                                                                              



NeuroImage: Clinical 31 (2021) 102706

5

accuracy of 90.5% (46.16/51.00) (Fig. 4). In addition, the model also 
achieved a cross-validated sensitivity of 93.5% (33.07/35.36) and cross- 
validated specificity of 83.7% (13.09/15.64). The area under the cross- 
validated receiver operating characteristic curve for this model was 
0.96 ± 0.11. This model leveraged upon 13 features which spanned both 
hemispheres. Patient age, sex, and pain laterality were found to be 
irrelevant to treatment response. Regional cortical thickness from the 
default mode network, specifically the contralateral isthmus cingulate 
gyrus, appeared to be the most effective predictor of 1 year response 
(Fig. 5). Additional predictors within the optimal regional cortical 
thickness model included: bilateral regional cortical thicknesses from 
lateral occipital gyrus and fusiform gyrus; ipsilateral regional cortical 
thicknesses from the whole insular cortex, superior parietal gyrus, pars 
triangularis, and inferior temporal gyrus; and contralateral regional 
cortical thicknesses from superior temporal gyrus, entorhinal cortex, 
lateral orbitofrontal gyrus, and pars orbitalis. Post-hoc group-level 
Bonferroni-corrected Student’s t-statistics revealed that trigeminal 
neuralgia patients had significantly reduced regional cortical thickness 
compared to healthy controls within ipsilateral inferior temporal gyrus, 

contralateral entorhinal cortex, contralateral lateral orbitofrontal gyrus, 
contralateral superior temporal gyrus, bilateral fusiform gyrus, and 
bilateral lateral occipital gyrus (see also Table 2). 

4. Discussion 

The evidence supporting the central nervous system’s role in the 
modulation of trigeminal neuralgia pain has been increasingly recog-
nized (Desouza et al., 2013; DeSouza et al., 2015, 2014; Vaculik et al., 
2019; Zhong et al., 2018). In line with these observations, we demon-
strated that central nervous system features, specifically pre-treatment 
regional brain gray matter morphology (14 regional surface areas or 
13 regional cortical thicknesses) can provide robust a priori prediction of 
pain relief/surgical response in trigeminal neuralgia. Brain-based 
multivariate models appear to be highly predictive of 1 year pain re-
lief, resulting in 96.7% and 90.5% cross-validated accuracies, respec-
tively. This surpassed prior nerve-based prognostication models for 
trigeminal neuralgia pain relief (>71.0% accurate) (Hung et al., 2017; 
Tohyama et al., 2019). This is notable as the central nervous system 

Fig. 2. Cross-validated prediction performance of the regional surface area model. Using 14 features, the regional surface area model created here successfully 
predicted 1 year outcome to surgery for trigeminal neuralgia at a high, cross-validated accuracy of 96.7%. The cross-validated sensitivity and specificity were 100.0% 
and 89.1%, respectively. A: The confusion matrix for this model demonstrated comparable performance for both response groups. Scalar bar serves as a guide for the 
average number of individuals within each quadrant of the confusion matrix. B: Receiver operating characteristic curve for the model revealed a cross-validated area 
under curve (AUC) of 0.97 which suggests a high level of discriminative performance. C: Permutation testing indicated that the model performed at a prediction 
accuracy that is beyond chance (green line), p < 0.001. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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appears to be more accurate than the PNS at predicting response to 
surgical interventions for trigeminal neuralgia despite the pathogenesis 
of trigeminal neuralgia being strongly hypothesized to be associated 
with the peripheral nervous system. In other words, our study supports 
the central nervous system as a relatively stronger modulator of chronic 
neuropathic pain in trigeminal neuralgia than the peripheral nervous 
system. 

4.1. Prior multivariate predictions of chronic neuropathic pain relief 

Previous attempts at addressing treatment response, especially 
treatment response following surgical interventions for chronic neuro-
pathic pain disorders such as trigeminal neuralgia, have centered largely 
around the utility of nerve-based biomarkers. In this realm, ML models 
were able to leverage microstructural information from trigeminal 

nerves to pre-surgically predict 1 year pain relief at a moderate, cross- 
validated accuracy of 71.0% (Hung et al., 2017)—improving to 73.0% 
with early post-treatment data (Tohyama et al., 2019). Given the 
growing evidence that chronic neuropathic pain like trigeminal neu-
ralgia is associated with gray and white matter alterations in brain re-
gions important for affective and somatosensory dimensions of pain 
such as the insular cortices and somatosensory sensory cortices (Desouza 
et al., 2013; Obermann et al., 2013; Vaculik et al., 2019), we investi-
gated multiple brain-based, regional gray matter morphological mea-
sures as pre-treatment predictors of surgical interventions for chronic 
neuropathic pain. Through this endeavour, we showed that ML models 
constructed from regional brain morphology such as regional surface 
area and regional cortical thickness are much more accurate than nerve- 
based models for the prognostication of 1 year surgical response in 
chronic neuropathic pain subjects. In particular, the regional surface 

Fig. 3. Relative strengths of predictors in the regional surface area model. A: Regional surface area from the contralateral superior frontal gyrus is highly predictive 
of 1 year response to surgery in comparison to other features. Overall, the higher the mean feature weight, the more important a given feature is to the overall 
prediction accuracy. Black bars indicate mean absolute feature weight. Dots are within-fold feature weights. Contra = contralateral, Ipsi = ipsilateral, SFG = superior 
frontal gyrus, CACG = caudal anterior cingulate gyrus, PTR = pars triangularis, EC = entorhinal cortex, PrCG = precentral gyrus, CMFG = caudal middle frontal 
gyrus, PCAL = pericalcarine gyrus, PaCG = paracentral lobule, STG = superior temporal gyrus, FG = fusiform gyrus, SPG = superior parietal gyrus, PHIG = par-
ahippocampal gyrus. B: This region is highlighted in the glass brain (left: ipsilateral brain, right: contralateral brain). 
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area-based model achieved the highest accuracy (96.7%) which suggests 
that regional surface area differences, rather than regional cortical 
thickness differences, may more closely associate with surgical treat-
ment response in chronic neuropathic pain. 

4.2. Regional gray matter morphological underpinnings of chronic 
neuropathic pain 

Prior literature on regional morphological alterations in brain gray 
matter in chronic neuropathic pain subjects have revealed widespread 
cortical thickness abnormalities. In comparison to healthy controls, 
subjects with orofacial chronic neuropathic pain showed thicker post-
central gyrus, thinner insular cortex, and thinner cuneus cortex (Amaral 
et al., 2018; Hubbard et al., 2014; Maleki et al., 2015; Moayedi et al., 
2011; Parise et al., 2014; Wang et al., 2017a, 2017b; Yang et al., 2017). 
Our current study adds to the clinical importance of these observations 
by showing insular cortical thickness is predictive of individual-level 1 
year response to surgical interventions for orofacial chronic neuropathic 

pain like trigeminal neuralgia. The literature on regional surface area 
alterations in chronic neuropathic pain, however, has been scarce (Wang 
et al., 2017a, 2017b). Here we observed that pre-treatment superior 
frontal gyrus surface area is highly predictive of 1 year treatment 
response after surgery for trigeminal neuralgia. As such, future studies 
are needed to better understand the role of regional surface area’s 
involvement in various dimensions of orofacial chronic neuropathic 
pain and its relief. This potentially can be achieved via multivariate 
correlation analyses of regional surface areas with pain intensity, pain 
duration, and additional pain metrics. 

4.3. The default mode network as a key hub of pain treatment response 
predictors 

Chronic pain disorders are known to significantly alter resting state 
brain networks (Tsai et al., 2018; Wang et al., 2017a, 2017b; Zhang 
et al., 2018). In particular, the default mode network appears to be 
highly disrupted in trigeminal neuralgia whereby the cross-network 

Fig. 4. Cross-validated prediction performance of the regional cortical thickness model. Using 13 features, the regional cortical thickness model successfully pre-
dicted 1 year outcome to surgery for trigeminal neuralgia at a cross-validated accuracy of 90.5%. The cross-validated sensitivity and specificity were 93.5% and 
83.7%, respectively. Regional Cortical thickness model’s accuracy, sensitivity, and specificity were lower than the regional surface area model. A: The confusion 
matrix for the cortical thickness model demonstrated comparable performance for both response groups. Scalar bar serves as a guide for the average number of 
individuals within each quadrant of the confusion matrix. B: Receiver operating characteristic curve for the regional cortical thickness model revealed a cross- 
validated area under curve (AUC) of 0.96 which suggests a high level of discriminative performance. C: Permutation testing indicated that the model performed 
at a prediction accuracy that is beyond chance (green line), p < 0.001. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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functional connectivity between default mode network to somatomotor/ 
sensorimotor, frontoparietal, and limbic networks are markedly reduced 
(Tsai et al., 2018; Wang et al., 2017a, 2017b; Zhang et al., 2018). Our 
findings also reveal that the default mode network is a hub of regional 
gray matter morphological alterations that are superbly effective as 
predictors of 1 year response to surgical intervention for chronic 
neuropathic pain. Importantly, regional surface area from superior 
frontal gyrus and cortical thickness from isthmus cingulate cortex 
appeared to be the strongest predictors in this regard. Prior reports have 
associated a variety of plasticity changes—both functional and struc-
tural—within the superior frontal gyrus with trigeminal neuralgia pain 
duration and severity (Tsai et al., 2018; Xiang et al., 2019; Yuan et al., 
2018). Conversely, the isthmus cingulate cortex, has been shown to 
exhibit focally accelerated gray matter loss with increasing age in 
humans (Grieve et al., 2011). It is therefore possible that varying degrees 
of default mode network regional gray matter alterations arising from 

chronic pain, aging, and potential interactions between the two factors 
may differentiate trigeminal neuralgia surgery responders from non- 
responders. 

4.4. Pain duration as a predictor of pain relief after Gamma Knife 
radiosurgery for trigeminal neuralgia 

Patients with trigeminal neuralgia, especially those refractive to 
conventional pharmacological interventions, can experience prolonged 
pain duration often many years of pain. It is therefore important to 
perform exploratory analysis into the relative contribution of pain 
duration as a predictor of treatment outcome. When pain duration was 
included as a feature into our machine learning framework, the pre-
diction accuracy increased by 2.5% and 3.3% for the regional cortical 
thickness model and regional surface area model, respectively. How-
ever, pain duration can be prone to recall bias and can therefore be 

Fig. 5. Relative strengths of predictors in the regional cortical thickness model. A: Regional cortical thickness from contralateral isthmus cingulate gyrus is highly 
predictive of 1 year response to surgery in comparison to other features. Overall, the higher the mean feature weight, the more important a given feature is to the 
overall prediction accuracy. Black bars indicate mean absolute feature weight. Dots are within-fold feature weights. Contra = contralateral, Ipsi = ipsilateral, ICG =
isthmus cingulate gyrus, FG = fusiform gyrus, ITG = inferior temporal gyrus, POR = pars orbitalis, FG = fusiform gyrus, IN = insular cortex, SPG = superior parietal 
gyrus, LOFG = lateral orbitofrontal gyrus, PTR = pars triangularis, STG = superior temporal gyrus, LOG = lateral occipital gyrus, EC = entorhinal cortex. B: This 
feature is further highlighted in the glass brain (left: ipsilateral brain, right: contralateral brain). 
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inaccurate. Given the limited increase in accuracy that pain duration 
provides, we believe future implementation studies should focus on the 
use of prediction models solely utilizing objective structural imaging 
features—bypassing the recall bias while maintaining a high level of 
treatment response (pain relief) prognostication performance. 

5. Limitations 

We note that our ML models are dependent on the availability of 
multivariate collections of morphological features. How individual 
features/predictors differentiate response groups apart remain to be 
explored in future studies with properly corrected group-level mass 
univariate statistics. Our study cohort are collected at a single surgical 
center. Despite this, our center receives broad patient referral across the 
nation, so the geographical selection bias is somewhat minimized. 
Through 10-fold stratified cross-validation we have obtained a reason-
able estimate of out-of-sample generalizability at our institution. To 
further assess the out-of-institution generalizability, we recommend that 
future studies address the broader applicability and performance of our 
models at multiple international treatment centers for chronic neuro-
pathic pain. This will also come with the additional benefit of being able 
to assess if our model is useful when provided with data from different 
MRI scanners. Both right-sided and left-sided trigeminal neuralgia pain 
patients were included in our study. We addressed this potential 
confound by including pain laterality in our ML framework. Sex and age 
of the patients were also included in our ML framework as these features 
are well-documented to impact chronic neuropathic pain. Our study 
cannot completely rule out possible involvement of pain medications 
(type and duration) on multivariate structural differentiation of radio-
surgery response status and as such provides possible avenues for future 
pharmacological investigations. Despite this, our model performed at a 
high level without the information that these interactions may provide 
and arrived at sensible individual-level prediction of Gamma Knife 
radiosurgery treatment outcome for individuals with trigeminal 
neuralgia. 

Conclusion: Towards brain-guided ML tools for chronic 

neuropathic pain relief 
Our current study, in conjunction with prior studies (Lee et al., 2019; 

Lindquist et al., 2017; López-Solà et al., 2017; Wager et al., 2013), 
supports the use of multivariate ML methods in future investigation and 
the development of individual-level clinical tools for chronic pain. Here, 
we developed an improved ML framework which addresses the common 
issue of overfitting in multidimensional, neuroimaging feature space. 
Our framework with the SBS procedure may serve as the crucial first step 
towards future ML studies on chronic pain populations and will likely 
lead to more generalizable, clinically useful, and translatable prognos-
tication tools for chronic pain treatments. Given that our current brain- 
based models are constructed from readily available T1-weighted MRI 
data, they may be easily implemented clinically to further optimize 
surgical treatment selection for trigeminal neuralgia patients, mitigate 
the delivery of unnecessary treatments, and facilitate timely assessment 
for alternative pain treatments such as neuromodulation. 
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Table 2 
Regional cortical thickness statistics contrasting TN patients and controls.  

Region of interest Pain laterality t statistic d.f. p value q value Significance 

Contralateral EC Left − 4.06E + 00 4.31E + 01 2.05E-04 5.33E-03 ** 
Contralateral EC Right − 3.61E + 00 3.60E + 01 9.26E-04 2.41E-02 * 
Ipsilateral FG Left − 5.18E + 00 6.59E + 01 2.31E-06 6.02E-05 *** 
Ipsilateral FG Right − 3.72E + 00 3.70E + 01 6.61E-04 1.72E-02 * 
Contralateral FG Left − 5.18E + 00 6.59E + 01 2.31E-06 6.02E-05 *** 
Contralateral FG Right − 3.72E + 00 3.70E + 01 6.61E-04 1.72E-02 * 
Contralateral ICG Left 2.40E-01 5.46E + 01 8.11E-01 1.00E + 00 n.s. 
Contralateral ICG Right − 8.93E-02 3.37E + 01 9.29E-01 1.00E + 00 n.s. 
Ipsilateral IN Left − 2.36E + 00 6.21E + 01 2.14E-02 5.55E-01 n.s. 
Ipsilateral IN Right − 1.26E + 00 3.88E + 01 2.14E-01 1.00E + 00 n.s. 
Ipsilateral ITG Left − 5.37E + 00 5.33E + 01 1.75E-06 4.55E-05 *** 
Ipsilateral ITG Right − 3.55E + 00 3.30E + 01 1.17E-03 3.04E-02 * 
Contralateral LOFG Left − 4.61E + 00 6.32E + 01 2.00E-05 5.19E-04 *** 
Contralateral LOFG Right − 3.85E + 00 2.88E + 01 6.02E-04 1.57E-02 * 
Ipsilateral LOG Left − 4.24E + 00 7.43E + 01 6.33E-05 1.65E-03 ** 
Ipsilateral LOG Right − 3.98E + 00 3.52E + 01 3.33E-04 8.66E-03 ** 
Contralateral LOG Left − 4.24E + 00 7.43E + 01 6.33E-05 1.65E-03 ** 
Contralateral LOG Right − 3.98E + 00 3.52E + 01 3.33E-04 8.66E-03 ** 
Contralateral POR Left − 7.19E-01 6.67E + 01 4.75E-01 1.00E + 00 n.s. 
Contralateral POR Right − 2.84E + 00 3.61E + 01 7.33E-03 1.91E-01 n.s. 
Ipsilateral PTR Left − 1.85E + 00 6.98E + 01 6.79E-02 1.00E + 00 n.s. 
Ipsilateral PTR Right − 8.20E-01 5.24E + 01 4.16E-01 1.00E + 00 n.s. 
Ipsilateral SPG Left − 2.52E + 00 7.77E + 01 1.39E-02 3.61E-01 n.s. 
Ipsilateral SPG Right − 1.63E + 00 6.14E + 01 1.08E-01 1.00E + 00 n.s. 
Contralateral STG Left − 5.42E + 00 5.41E + 01 1.41E-06 3.67E-05 *** 
Contralateral STG Right − 5.24E + 00 4.82E + 01 3.48E-06 9.05E-05 *** 

Abbreviations: EC = entorhinal cortex, FG = fusiform gyrus, ICG = isthmus cingulate gyrus, ITG = inferior temporal gyrus, LOFG = lateral orbitofrontal gyrus, LOG =
lateral occipital gyrus, POR = pars orbitalis, PTR = pars triangularis, SPG = superior parietal gyrus, STG = superior temporal gyrus, d.f. = degrees of freedom, q value 
= Bonferroni corrected p value, * = q < 0.05, ** = q < 0.01, *** = q < 0.001, n.s. = non-significant. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.nicl.2021.102706. 
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