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A B S T R A C T

Diffusion MRI (dMRI) tractography has been successfully used to study the trigeminal nerves (TGNs) in many clinical and research applications. Currently, identi-
fication of the TGN in tractography data requires expert nerve selection using manually drawn regions of interest (ROIs), which is prone to inter-observer variability,
time-consuming and carries high clinical and labor costs. To overcome these issues, we propose to create a novel anatomically curated TGN tractography atlas that
enables automated identification of the TGN from dMRI tractography. In this paper, we first illustrate the creation of a trigeminal tractography atlas. Leveraging a well-
established computational pipeline and expert neuroanatomical knowledge, we generate a data-driven TGN fiber clustering atlas using tractography data from 50
subjects from the Human Connectome Project. Then, we demonstrate the application of the proposed atlas for automated TGN identification in new subjects, without
relying on expert ROI placement. Quantitative and visual experiments are performed with comparison to expert TGN identification using dMRI data from two different
acquisition sites. We show highly comparable results between the automatically and manually identified TGNs in terms of spatial overlap and visualization, while our
proposed method has several advantages. First, our method performs automated TGN identification, and thus it provides an efficient tool to reduce expert labor costs
and inter-operator bias relative to expert manual selection. Second, our method is robust to potential imaging artifacts and/or noise that can prevent successful manual
ROI placement for TGN selection and hence yields a higher successful TGN identification rate.
1. Introduction

The trigeminal nerve (TGN) is the largest and most complex of the 12
pairs of cranial nerves in the brain. It includesmultiple segments, including
brainstem, cisternal, Meckel’s cave and peripheral branches (see Fig. 1 for
an anatomical overview) (Go et al., 2001; Joo et al., 2014). It supplies
sensation to the skin in the face, the ear, the mucous membranes orally and
endonasally aswell asmotor innervation to themuscles ofmastication. The
TGN has been shown to be affected in many diseases such as trigeminal
neuralgia (Jannetta, 1967), multiple sclerosis (Love and Coakham, 2001;
Yadav et al., 2017), local ischemia (Balestrino and Leandri, 1997; Delitala
et al., 1999; Golby et al., 1998) and brain cancer (Timothee Jacquesson
et al., 2019). Many research studies have also suggested that the identifi-
cation of TGN is important for understanding and/or potential treatment of
various neurological disorders such as major depressive disorder (Schrader
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et al., 2011), attention-deficit/hyperactivity disorder (McGough et al.,
2015), and Parkinson’s disease (Barz et al., 1997).

Magnetic resonance imaging (MRI) techniques have been used to
identify the TGN for clinical and research purposes (Casselman et al.,
2008; Ciftci et al., 2004; Timothee Jacquesson et al., 2019; Ruiz-Jur-
etschke et al., 2018; Tsutsumi et al., 2018; N. Yoshino et al., 2003).
Among these techniques, traditional T2-weighted MRI is the most widely
used, e.g., to confirm the presence of neurovascular compression at the
root entry zone (REZ) of the TGN (Casselman et al., 2008; Xie et al.,
2020). There have also been studies applying MRI techniques, such as
constructive interference in steady-state sequence (CISS), fast imaging
employing steady-state acquisition (FIESTA) and driven equilibrium
radio frequency reset pulse (DRIVE), which have advanced performance
in visualizing human nerves compared to a conventional T2-weighted
image (Ciftci et al., 2004; Ruiz-Juretschke et al., 2018; Tsutsumi et al.,
20
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Fig. 1. A schematic anatomical overview of the TGN.

1 https://github.com/SlicerDMRI/whitematteranalysis.
2 https://dmri.slicer.org/atlases.
3 https://dmri.slicer.org/.
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2018; N. Yoshino et al., 2003). However, these MRI sequences can only
localize the cisternal portion of the TGN, while the continuity and
pathological alteration of the TGN and brainstem nuclei, as well as the 3D
relationship of the TGN with surrounding structures, cannot be assessed
(Li et al., 2017; Liu et al., 2013; Neetu et al., 2016).

Diffusion MRI (dMRI), via a process called tractography, can track
brain white matter and nerve fibers in vivo non-invasively based on the
principle of detecting the random motion of water molecules in neural
tissue (Basser et al., 1994, 2000). dMRI tractography has been applied
successfully for tracking of the TGN (Fujiwara et al., 2011; Hung et al.,
2017; Ishida et al., 2011; Jacquesson et al., 2019; Wei et al., 2016; M.
Yoshino et al., 2016). One advantage of dMRI tractography is that it
enables tracking of the 3D trajectory of the TGN for visualization of TGN
structures not visualized by conventional MRI sequences (e.g.,
T2-weighted image, T2w), such as the course of the TGN within the
brainstem as well as anterior to the cisternal portion (Jacquesson et al.,
2019; Xie et al., 2020).

Currently, identification of the TGN from dMRI tractography data re-
lies on the region of interest (ROI) selection strategy, where trained ex-
perts select TGNs in an interactivewaybyplacingROIs. In the literature, to
our knowledge all related studies of the TGN have applied the expert ROI
selection strategy (Behanet al., 2017;DavidQ.Chen,DeSouza et al., 2016;
DavidQixiangChen et al., 2011; Coskun et al., 2017; Fujiwara et al., 2011;
Hung et al., 2017; Kabasawa et al., 2007; Moon et al., 2018; Wei et al.,
2016; Xie et al., 2020;M.Yoshino et al., 2016; Zolal et al., 2017); however,
practical problems remain. First, identification of the TGN is sensitive to
ROI placement (Jacquesson et al., 2019; Xie et al., 2020), where selection
of the best-performingROIs is a challenge. In relatedwork, ROI placement
is variable across studies, where adopted ROIs include cisternal portion
(CP, also called prepontine cistern, cisternal segment or midpoint of the
cisternal segment), root entry zone (REZ), and/or the Meckel’s cave (MC)
(Behan et al., 2017; David Q. Chen, DeSouza et al., 2016; David Qixiang
Chen et al., 2011; Coskun et al., 2017; Fujiwara et al., 2011; Kabasawa
et al., 2007;Moon et al., 2018;Wei et al., 2016; Zolal et al., 2017). Second,
placement of ROIs can be affected, or even fail, because of imaging arti-
facts and/or noise at the complex skull base environment (containing
nerve, bone, air, soft tissue and cerebrospinal fluid) (Xie et al., 2020).
Third, placement of ROIsmay require inter-modality registration between
dMRI and anatomical MRI (e.g. T2-weighted) data, which is challenging
for dMRI with low image resolution (Malinsky et al., 2013) and
echo-planar imaging (EPI) distortions (Albi et al., 2018). While ROI
placement for TGN identification can be done using dMRI data directly
(Behan et al., 2017; Fujiwara et al., 2011; Kabasawa et al., 2007; Moon
et al., 2018; Xie et al., 2020), most studies have obtained ROIs from
high-resolution anatomical MRI images for a better tissue contrast,
requiring a co-registration to the low-resolution dMRI space (David Q.
Chen, DeSouza et al., 2016; DavidQixiangChen et al., 2011; Coskun et al.,
2017; Fujiwara et al., 2011; Hung et al., 2017; Krishna et al., 2016; M.
Yoshino et al., 2016; Zolal et al., 2017). Fourth, ROI placement depends
critically on the experience of trained experts and hence inter-observer
variability is a real and ongoing issue of accurate image interpretation
(Hakulinen et al., 2012). Last but not least, manual interpretation is also
time-consuming, inefficient and has clinical and expert labor costs.
2

In neuroscience, there has been an enduring interest in automated
image processing and interpretation to resolve inter-observer variability
and improve clinical efficiency, e.g., automatically locating brain
anatomical structures and functions with references to common atlas
spaces (Fischl, 2012; Maldjian et al., 2003). There are voxel-wise atlases
that enable automated identification of cranial nerves in terms of the
presence at a particular location in the brain (Fischl, 2012; Kikinis et al.,
1996; Sultana, 2017). However, these atlases cannot be used to auto-
matically identify tractography fibers belonging to the cranial nerves.
Another type of voxel-wise atlas can define ROIs that are useful for
selecting tractography fibers. While this approach has mainly been
applied in the cerebrum (Lawes et al., 2008; Y. Zhang et al., 2010), Chen
et al. demonstrated successful automated subject-specific identification
of several cranial nerves (the facial/vestibular-cochlear nerve complex
and the vagus nerve) using a voxel-wise ROI atlas (David Q. Chen, Zhong,
et al., 2016). However, such ROI-based methods can be challenged by
highly sensitive tractography methods, which require more ROIs to select
due to their increased sensitivity (O’Donnell et al., 2017; Xie et al., 2020).
Rather than creating a voxel-wise atlas, in brain white matter analysis,
many studies have created brain dMRI tractography atlases (Guevara
et al., 2017; Maddah et al., 2005; O’Donnell and Westin, 2007; Rom�an
et al., 2017; Yoo et al., 2015; Fan Zhang, Wu et al., 2018; Ziyan et al.,
2009). These studies have successfully demonstrated automated identi-
fication of anatomical white matter fiber tracts (e.g. arcuate fasciculus),
with several advantages including 1) consistent tract identification in the
dMRI data from different acquisition protocols, 2) using dMRI data only,
thus not requiring inter-modality registration, and 3) high efficiency to
reduce expert labor costs and enable tractography analysis in large-scale
dMRI datasets. However, to our knowledge there are no existing trac-
tography atlases that can enable automated identification of the TGN in
tractography.

In this study, we present what we believe is the first study to create a
dMRI tractography TGN atlas, which enables automated identification of
the TGN in new tractography data without relying on expert ROI place-
ment. Our method relies on a well-established groupwise fiber clustering
pipeline from our research group (O’Donnell et al., 2012; O’Donnell and
Westin, 2007), which has been successfully applied in multiple research
studies (Fan et al., 2019; Gong et al., 2018; O’Donnell et al., 2017; Sto-
janovski et al., 2019; Wu et al., 2018; Fan Zhang, Savadjiev, et al., 2018;
Fan Zhang, Wu et al., 2018) and has been used recently for creation of an
anatomically curated white matter tract atlas (Fan Zhang, Wu, et al.,
2018, 2019). In the present study, we employ this fiber clustering pipe-
line to identify common TGN structures in an atlas population, including
50 subjects from the Human Connectome Project (HCP) (Van Essen et al.,
2013) that provide high-quality dMRI data. Leveraging population-based
brain anatomical information and expert neuroanatomical knowledge,
we identify a total of 40 fiber clusters belonging to the TGN in the atlas.
Each cluster represents a certain anatomical subdivision of the TGN and
its variability in the atlas population. The curated TGN model includes
not only the cisternal portion but also the putative mesencephalic tract
(Shigenaga et al., 1989) and the putative spinal trigeminal tract (M.
Yoshino et al., 2016), which are important portions of the TGN but have
been relatively less studied. The created TGN atlas and the fiber clus-
tering pipeline also provide a method to automatically identify the TGN
in new subject datasets. We demonstrate a successful application to dMRI
datasets from two different acquisition sites, including those from a
clinical acquisition protocol (a lower spatial resolution than the HCP
data). The fiber clustering pipeline is open source1 and the TGN atlas will
be made available online,2 as part of the SlicerDMRI project3 (Norton
et al., 2017; Fan Zhang et al., 2020).

In the rest of the paper, we first describe the datasets in this study.

https://github.com/SlicerDMRI/whitematteranalysis
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Here, we leveraged several findings about data processing, TGN tracking
and ground truth identification from our previous work, where we
compared different TGN fiber tracking strategies (dMRI data with
different b-values, in combination with both single- and multi-tensor
tractography methods) (Xie et al., 2020). Then, we introduce the crea-
tion of the proposed TGN atlas from 50 healthy adults, followed by a
demonstration of our method with an application of the atlas to dMRI
datasets that were scanned at two different acquisition sites (with
different spatial and angular resolutions). Quantitative and qualitative
evaluations are performed to evaluate our method’s TGN identification
performance, with comparison to expert selected TGNs.

2. Methods

2.1. Datasets and data processing

2.1.1. Datasets
In this study, we used dMRI data from two acquisition sites, including

the HCP database (Van Essen et al., 2013) and the Parkinson’s Progres-
sion Markers Initiative (PPMI) (Marek et al., 2011) database. The HCP
data was used for the TGN atlas creation (50 atlas subjects) and experi-
mental evaluation (an independent set of 50 testing subjects), while the
PPMI data (40 subjects) was used only for experimental evaluation.
Table 1 gives an overview of the demographics and the dMRI acquisitions
of the HCP and PPMI datasets under study.

The HCP provides dMRI data that was acquired with a high quality
image acquisition protocol using a customized Connectome Siemens
Skyra scanner and processed using a well-designed processing pipeline
(Glasser et al., 2013) including motion correction, eddy current correc-
tion and EPI distortion correction. The acquisition parameters of the
dMRI data in HCP were: TE ¼ 89.5 ms, TR ¼ 5520 ms, and voxel size ¼
1.25 � 1.25 � 1.25 mm3. A total of 288 images were acquired in each
dMRI dataset, including 18 baseline images with a low diffusion
weighting b ¼ 5 s/mm2 and 270 diffusion-weighted (DW) images evenly
distributed at three shells of b¼ 1000/2000/3000 s/mm2. More detailed
information about the HCP data acquisition and preprocessing can be
found in (Glasser et al., 2013). In our study, we used the single-shell b ¼
1000 s/mm2 data to perform TGN tracking (see Section 2.1.2 for details)
because it represents the clinical acquisition protocol and was shown in
our previous study to be more effective for TGN identification than
higher b values (Xie et al., 2020). We also used the anatomical T2w data
for evaluation of the TGNs. The acquisition parameters used for the T2w
data were TE ¼ 565 ms, TR ¼ 3200 ms, and voxel size ¼ 0.7 � 0.7 � 0.7
mm3. Imaging data from a total of 100 HCP subjects was used in our
study, including 50 subjects for the TGN atlas creation and another 50
Table 1
Demographics and dMRI acquisition of the HCP and PPMI datasets under study.

Dataset Demographics dMRI acquisition

HCP (atlas
subjects)

50 healthy (29 females and 21
males, age: 28.94 � 3.61)

18 b0 images
90 gradient directions (b ¼
1000)
TE/TR ¼ 89/5520 ms
resolution ¼ 1.25 mm3

(isotropic)
magnetic field strength ¼ 3T
matrix ¼ 168 � 144
FOV ¼ 210 � 180 mm

HCP (testing
subjects)

50 healthy (25 females and 35
males, age: 29.28 � 3.77)

PPMI (testing
subjects)

20 healthy (4 females and 16
males, age: 64.63 � 7.48)
20 Parkinson’s disease (6 females
and 14 males, age: 63.10 � 7.10)

1 b0 image
63 gradient directions (b ¼
1000)
TE/TR ¼ 88/7600 ms
resolution ¼ 2 mm3

(isotropic
static magnetic field
strength ¼ 3T
matrix ¼ 68 � 68
FOV ¼ 222 � 222 mm

3

subjects for experimental evaluation. We note that to ensure high quality
TGN representations for atlas creation, we selected 50 atlas subjects
whose dMRI data did not have apparent imaging artifacts and/or noise
(In our previous work (Xie et al., 2020), we showed that manual TGN
identification failed in several of the 100 HCP subjects because of im-
aging artifacts and/or noise at the skull base region.).

The PPMI data was used to test TGN identification performance using
an acquisition protocol that was different from the HCP data. We chose
data from Parkinson’s disease because it has been suggested to be closely
related to the TGN (Tremblay et al., 2017). The acquisition parameters of
the dMR data were: TE ¼ 88 ms, TR ¼ 7600 ms, voxel size ¼ 2 � 2x2
mm3, 1 baseline image with b ¼ 0 s/mm2 and 64 DW images with b ¼
1000 s/mm2. T2-weighted data (co-registered with the dMR data) was
also used for TGN experimental evaluation. The acquisition parameters
for the T2w data were: TE¼ 101 ms, TR¼ 3000 ms, and voxel size¼ 1�
1 � 1 mm3. The dMRI data was pre-processed with the following steps.
Eddy current-induced distortion correction and motion correction were
conducted using the Functional Magnetic Resonance Imaging of the
Brain (FMRIB) Software Library tool (Jenkinson et al., 2012). An
echo-planar imaging (EPI) distortion correction was performed with
reference to the T2-weighted image using the Advanced Normalization
Tools (ANTS) (Avants et al., 2009). For each subject, a nonlinear regis-
tration (registration was restricted to the phase encoding direction) was
computed from the b0 image to the T2w image to make an EPI corrective
warp. Then, the warp was applied to each diffusion image. Data from 40
PPMI subjects (20 healthy controls and 20 Parkinson’s disease patients)
was used in our experiment.

2.1.2. Multi-tensor TGN tractography
For each subject under study, we performed TGN tractography from

the dMRI data. We used the two-tensor unscented Kalman filter (UKF)
tractography method4 (Malcolm et al., 2010; Reddy and Rathi, 2016) to
perform TGN tracking, as illustrated in Fig. 2(a). We chose the two-tensor
UKF tractography method because it has been demonstrated to be
effective in tracking the TGN in our previous study (Xie et al., 2020), as
well as tracking the brain white matter fiber tracts (Z. Chen et al., 2016;
Gong et al., 2018; Liao et al., 2017; Fan Zhang, Wu, et al., 2018). The UKF
method fits a mixture model of two tensors to the dMRI data while
tracking fibers, providing a highly sensitive fiber tracking ability, in
particular, in the presence of crossing fibers (Z. Chen et al., 2016; Gong
et al., 2018; Liao et al., 2017; Fan Zhang, Wu, et al., 2018). This is
important for tracking the intra-brainstem portions of the TGN (including
the putative spinal trigeminal and putative mesencephalic trigeminal
tracts, as demonstrated in our previous study (Xie et al., 2020) and in
Suppl Fig. 2), where nerve fibers cross with white matter fibers. In
contrast to other methods that fit a model to the signal independently at
each voxel (Behan et al., 2017; Qazi et al., 2009), the UKF method fits a
model to the diffusion data while tracking fibers, in a recursive estima-
tion fashion (the current tracking estimate is guided by the previous one).
One benefit of the recursive estimation is to help stabilize model fitting;
thus fiber tracking can be robust to a certain amount of imaging arti-
fact/noise. Another benefit of UKF is that fiber tracking orientation is
controlled by a probabilistic prior about the rate of change of fiber
orientation (defined as the parameter Qm introduced below), instead of
cutoffs or limits on the fiber curvature as in typical tractography algo-
rithms. Consequently, sharp fiber curvatures are avoided as they are very
unlikely, whereas fiber curvatures (e.g., the branching structures of the
TGN) supported by the dMRI are still allowed. These properties of UKF
are different from other tractography algorithms such as the single DTI
tractography (Basser et al., 2000) and the two-tensor eXtended Stream-
line Tractography (Qazi et al., 2009) that have been applied for TGN fiber
tracking (David Q. Chen, DeSouza et al., 2016; David Qixiang Chen et al.,
2011; Coskun et al., 2017; Kabasawa et al., 2007). (To demonstrate our
4 https://github.com/pnlbwh/ukftractography.

https://github.com/pnlbwh/ukftractography


Fig. 2. Schematic diagram of the proposed method, where the blue boxes represent the computational steps and the green boxes represent the input/output. The
major steps are linked to a pictorial illustration, as follows. (a) to (c) show the creation of the TGN atlas. (a) Multi-tensor tractography is seeded within a mask that
covers the possible region through which the TGN passes. (b) Given the tractography data (co-registered to a common space, i.e., the atlas space) from the 50 atlas
subjects, spectral clustering is performed to generate a fiber clustering atlas, where each cluster has a unique color. (c) Using expert neuroanatomical knowledge
(involving three experts, GX, MAM, and NM), 40 clusters were identified to belong to the TGN, where each cluster represents a specific subdivision of the whole TGN.
Three example clusters are displayed, belonging to the cisternal portion, the mesencephalic trigeminal tract, and the spinal trigeminal tract, respectively. (d) to (f)
show identification of the TGN of a new subject. (d) TGN tractography of the new subject is performed, in the same way as the atlas subjects. (e) Fiber clustering of the
tractography data (registered to the atlas space) is conducted according to the fiber clustering atlas. (f) Identification of the TGN clusters in the new subject is
conducted by finding the corresponding subject-specific clusters to those annotated in the atlas. Three example subject-specific TGN clusters, corresponding to the ones
shown in (c), are displayed.
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automated TGN identification method’s ability to generalize to tractog-
raphy data from different methods, we have included an additional two
tractography methods, as introduced in Supplementary Material S1.)

TGN tractography was seeded from all voxels within a mask, which
was larger than the possible region through which the TGN passes. This
procedure was similar to whole brain seeding but it was restricted to the
potential TGN region for efficiency. We note that our method does not
require sophisticated masking as long as the mask covers the TGN and is
4

approximately in a similar place across all subjects. We used the 3D Slicer
Segment Editor tool to do this by placing a spherical or oval mask with a
diameter about 35 mm, centered at the anterior portion of the pons (as
illustrated in Fig. 2(a)). There are five major parameters of the UKF
method, including seedingFA, stoppingFA, stoppingThreshold, Qm and Ql.
These parameters function as follows. Tractography is seeded in all
voxels within a providedmaskwhere fractional anisotropy (FA) is greater
than seedingFA. Tracking stops in voxels where the FA value falls below
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stoppingFA or the sum of the normalized signal across all gradient di-
rections falls below stoppingThreshold (a parameter to distinguish be-
tween white/gray matter and cerebrospinal fluid (CSF) regions). During
the tracking, the UKF method uses Qm to control process noise for an-
gles/direction, andQl to control process noise for eigenvalues. These UKF
tractography parameters were well tuned and were set as: seedingFA ¼
0.06, stoppingFA ¼ 0.05, stoppingThreshold ¼ 0.06, Qm ¼ 0.001 and Ql ¼
300. Two seeds per voxel were used for seeding the tractography, which
resulted in about 70,000 fibers in the TGN tractography per subject.
Visual and quantitative quality control of the tractography data was
performed using the quality control tool in the whitematteranalysis5

software. We note that in the present study, we used a relatively low
seeding sampling setting (2 seeds per voxel) because it was sufficient to
generate visually reasonable TGNs corresponding to the anatomy, while
keeping a low computational cost. To increase the tract density, a higher
number of seeds per voxel can be used (see Supplementary Material S1
for a visualization of an identified TGN from tractography data computed
using 5 seeds per voxel).

2.1.3. Identification of ground truth TGN using manual selection
For selected subjects, we performed manual ROI-based TGN identi-

fication from the tractography data. These manually selected TGNs were
used for initial selection of fiber clusters potentially belonging to the TGN
in the atlas (see Section 2.2.1) and were used as ground truth for eval-
uation of the automatically identified TGNs (see Section 2.4). (We note
that for identification of the TGN in new subjects using our method, there
is no need to perform manual TGN selection.)

We performed manual TGN identification using predefined manually
drawn ROIs from the MC and the CP of the TGN, as described in (Xie
et al., 2020). We note that these two ROIs were most commonly used in
the literature for expert TGN selection (Behan et al., 2017; Coskun et al.,
2017; Fujiwara et al., 2011; Kabasawa et al., 2007; Wei et al., 2016; Xie
et al., 2020; M. Yoshino et al., 2016; Zolal et al., 2017), and they were
relatively easily identified. The manual TGN identification method was
previously validated in an inter-rater experiment (by two practicing
neurosurgeons GX and MAM), showing a high joint probability of
agreement (Xie et al., 2020). The ROI in MC was drawn on the mean b ¼
0 image from the coronal view, and the ROI in CP was drawn on themean
directionally encoded color (DEC) map of diffusion tensor imaging (DTI)
from the coronal view. For the HCP data, we attempted to perform
manual TGN selection on all of the 100 subjects; however, 8 testing
subjects failed because their dMRI data had artifacts and/or noise at the
skull base region that prevented placement of ROIs. (We note that we also
attempted to draw ROIs on the T2w image, on which the ROIs could be
recognized. However, this attempt also failed because the imaging arti-
facts and/or noise affected the registration between the dMRI and T2w
data at the skull base region.) For the PPMI database, we performed
manual TGN identification on two randomly selected subjects (a 69 year
old female healthy control and a 72 year old male Parkinson’s disease
patient).

2.2. Creation of TGN atlas

We created the TGN fiber clustering atlas using the tractography data
from the 50 atlas subjects. This involved 1) generating a data-driven fiber
clustering atlas for TGN tractography parcellation into multiple fiber
clusters and 2) curating fiber clusters anatomically belonging to the TGN,
as illustrated in Fig. 2(b and c).

2.2.1. Generation of TGN fiber clustering atlas
The TGN fiber clustering atlas was generated using groupwise fiber

clustering to simultaneously parcellate TGN tractography from multiple
subjects (Fig. 2(b)). First, the TGN tractography data of the 50 atlas
5 https://github.com/SlicerDMRI/whitematteranalysis.

5

subjects was registered into a common space (i.e. atlas space). This was
done by performing an affine registration between the b ¼ 0 image of
each subject (moving image) and a population-mean T2-weighted image
(reference image) using 3D Slicer. We chose T2w data for co-registration
because it has similar contrast to the b ¼ 0 images for promising inter-
MRI-modality registration (Albi et al., 2018). Also, T2w data has a
good contrast of the cisternal portion of the TGN and has been widely
used to confirm the presence of the TGN (Casselman et al., 2008; Xie
et al., 2020). Specifically, we used the population-mean T2 image, that
has been successfully applied to co-register tractography data (Fan et al.,
2019), provided in the white matter atlas from our group (Fan Zhang,
Wu, et al., 2018). Then, the obtained transform was applied to the
subject-specific TGN tractography data. In the present study, we per-
formed a semi-automated quality control of the registration results, using
in-house developed Matlab scripts that enable a visualization of the
registered b0 and the population-mean T2 image together.

Next, spectral clustering was used to compute a high-dimensional
fiber clustering atlas (O’Donnell and Westin, 2007) to divide the TGN
tractography into K clusters, where K is a user-given parameter to define
the parcellation scale. The spectral embedding created a space that
robustly represented each fiber according to its affinity to all other fibers
across subjects. This fiber representation gives a robust feature vector or
“fingerprint” that describes the fiber for clustering. The fiber affinity was
computed by converting pairwise fiber geometric distances (the popular
mean closest point distance is used (Moberts et al., 2005; O’Donnell and
Westin, 2007)) using a Gaussian-like kernel, representing fiber similarity
according to the fiber geometry and trajectory. One benefit of such fiber
similarity matching was that it was highly robust to local fiber tract
variation to ensure morphology agreement across subjects. Therefore,
roughly aligned tractography data using the above volume-based affine
co-registration was sufficient to co-register across different subjects.
Nystrom sampling (Fowlkes et al., 2004) was used to reduce the com-
putations considering the large number of fiber pairs across subjects.
Bilateral clustering, simultaneously segmenting TGN fibers on both sides
of the cranial base to improve parcellation robustness (O’Donnell and
Westin, 2007), was applied to obtain the K fiber clusters. Bilateral clus-
tering is beneficial for accounting for potential laterality of the TGNs
because it can robustly find the corresponding fiber structures on both
sides of the cranial base. Our previous studies have demonstrated the
benefit of the bilateral fiber clustering in identifying corresponding white
matter structures across hemispheres and in investigating potential white
matter lateralized changes (Propper et al., 2010; Wu et al., 2018). In
addition, we incorporated an outlier removal process to remove
improbable fibers for cluster consistency in the atlas. In this process, a
fiber was considered as an outlier if it was distant from other fibers
within its cluster (over 2 standard deviations from the cluster’s mean
fiber affinity, as applied in our previous work (O’Donnell and Westin,
2007; Wu et al., 2018; Fan Zhang, Savadjiev, et al., 2018; Fan Zhang, Wu,
et al., 2018)). In the present study, all fiber clustering computations were
performed using the whitematteranalysis software, with the suggested
settings for related parameters. 10,000 fibers were randomly sampled
from each subject’s TGN tractography for a total of 0.5 million fibers for
the atlas creation.

We generated multiple fiber clustering atlases to investigate the TGN
tractography parcellation at different scales (number of clusters, K,
ranging from 500 to 3000). The TGN atlas consisting of K¼ 2500 clusters
was chosen because it represented the minimum scale to identify the pu-
tative mesencephalic trigeminal tract. The putative mesencephalic tri-
geminal tract was a small TGN structure with fewer fibers than the TGN
cisternal portion. Using a coarser parcellation scale (e.g. K ¼ 2000), the
putativemesencephalic trigeminal tractwas clustered togetherwith other
TGN structures. On the other hand, while using a finer parcellation scale
(e.g. K ¼ 3000) could also provide a reasonable TGN clustering result, it
would increase the workload for expert curation of the TGN clusters and
decrease parcellation consistency (i.e. consistent identification of each
individual cluster) across subjects as suggested in our previous work (F.

https://github.com/SlicerDMRI/whitematteranalysis
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Zhang, Norton, et al., 2017; Fan Zhang, Wu, et al., 2018).

2.2.2. Curation of TGN fiber clusters
Given the chosen TGN fiber clustering atlas (K ¼ 2500), each fiber

cluster (including bilateral fibers on both sides of the cranial base) was
annotated to indicate whether it belongs to the TGN or not. This fiber
cluster annotation was performed by an initial cluster annotation
computation, followed by expert judgment. This resulted in a curated
atlas TGN with multiple fiber clusters, where nerve fibers in each cluster
have similar trajectories, representing a particular anatomical subdivi-
sion. In the way, the curated TGN atlas provides an effective way to
describe the complex anatomy of the TGN, e.g., the branching structures
of the TGN that are subdivided into multiple clusters.

We leveraged the manually selected TGNs (Section 2.1.3) to perform
an initial selection of potential clusters belonging to the TGN. The pur-
pose of this initial computation step is to bootstrap the expert cluster
annotation with a first pass that can be performed automatically by the
computer. From the 10,000 fibers that were randomly sampled from each
subject’s TGN tractography for the atlas generation, we first identified
the fibers that were manually selected to be the TGNs. Then we calcu-
lated a probability for each bilateral atlas cluster belonging to the TGN,
i.e., the number of fibers that were manually selected to belong to the
TGN divided by the number of total fibers in the cluster. We initially
selected the fiber clusters that had a probability over 0, which resulted in
a total of 127 candidate clusters for expert judgment.

Next, an expert rater (GX who is a practicing neurosurgeon) per-
formed expert annotation of the 127 candidate bilateral clusters. Spe-
cifically, the expert rater viewed each atlas fiber cluster with reference to
the population-mean T2 image that was used to register all atlas TGN
tractography into the atlas space (Section 2.2). This enabled viewing of
the nerve structure and its variability across all atlas subjects. To confirm
the population-based decision, the corresponding subject-specific clus-
ters from five randomly selected subjects were checked with reference to
the subject’s T2-weighted image. Another expert rater (NM who is a
neuroanatomist) viewed the curated TGN clusters and confirmed their
anatomical correctness.

Overall, there are a total of 40 TGN clusters in the atlas (Fig. 2(c)).
Each cluster represents a particular anatomical subdivision of the TGN,
including the TGN cisternal portion (35 clusters), the putative mesen-
cephalic tract (2 clusters), and the putative spinal trigeminal tract (3
clusters) (example clusters are shown in Fig. 2(c)).

2.3. Application of the TGN atlas to new subjects

Automated identification of the TGNof a new subject was conducted by
applying the atlas to the subject’s TGN tractography, as illustrated in
Fig. 2(d,e,f). First, the TGN tractographywas registered into the atlas space,
by performing an affine registration between the subject’s b¼ 0 image and
the population-mean T2-weighted image and then applying the obtained
transform to the TGN tractography data. (This was the same process as
registering the TGN tractography data of the atlas subjects.) Then, subject-
specific fiber clusters were detected using spectral embedding of the
registered tractography, followed by assignment of eachfiber to the closest
atlas cluster (O’Donnell and Westin, 2007). As a result, the new subject’s
TGN tractography was divided into multiple fiber clusters, where each
cluster corresponded to a certain atlas fiber cluster. Outlier fibers were
removed if theirfiber affinity regarding theatlas clusterwasover2 standard
deviations fromthe cluster’smeanfiber affinity.Next, TGN identificationof
thenewsubjectwas conductedbyautomaticallyfinding the subject-specific
clusters that corresponded to the annotated atlas clusters.

2.4. Experimental evaluation

All subjects’ TGN tractography (including the 50 HCP atlas subjects,
the 50 HCP testing subjects and the 40 PPMI subjects) was parcellated
using the proposed atlas. We note that our atlas was created using only
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the 50 HCP atlas subjects, while the additional 50 HCP testing subjects
and the 40 PPMI subjects were used for testing the performance on new
data. We performed the following experiments to evaluate the TGN
identification performance of our method.

2.4.1. TGN identification rate
We computed the mean TGN identification rate (percentage of suc-

cessfully identified TGNs) across all subjects in each dataset. We per-
formed this evaluation for the overall TGN, as well as for the subdivisions
including the cisternal portion of the TGN, the mesencephalic trigeminal
tract and the spinal trigeminal tract. The identified TGNs and their sub-
divisions were confirmed (i.e., visually assessed as belonging to the TGN)
by the expert rater (GX). We note that this expert visual inspection pro-
vided a complementary assessment to ground truth comparison with
manual ROI selection, which is especially important to ensure the
anatomical viability of the automatically identified TGNs when manual
ROI selection failed. We reported the mean identification rate of the 50
HCP testing subjects (a total of 100 TGNs) and the 40 PPMI testing
subjects (a total of 80 TGNs). For comparison, we also reported the mean
identification rate of the 50 HCP atlas subjects (a total of 100 TGNs) to
show how the atlas generalized to data from the atlas population. Finally,
we reported the mean TGN identification rates of the expert TGN selec-
tion in the 50 HCP atlas subjects and in the 50 HCP testing subjects.

2.4.2. TGN spatial overlap
We performed a quantitative comparison to assess if the TGNs iden-

tified using the atlas spatially overlapped with the manually identified
TGNs. Specifically, we computed the weighted Dice (wDice) coefficient
between the automatically and manually identified TGNs from each
subject. wDice coefficient was designed specifically for measuring volu-
metric overlap of fiber tracts (Cousineau et al., 2017; Fan et al., 2019).
wDice extends the standard Dice coefficient (Dice, 1945) taking account
of the number of fibers per voxel so that it gives higher weighting to
voxels with dense fibers. For the HCP database, we reported the mean
and the standard deviation of the wDice values across the 50 atlas sub-
jects and those across the 42 testing subjects with successful manual TGN
selection. (Note that the other 8 HCP testing subjects were not included
in the quantitative comparison because manual selection failed.) For the
PPMI database, we reported the wDice score for each of the two selected
subjects with manually selected TGNs.

2.4.3. TGN visualization
For visual comparison of the automated TGN identification and the

manual selection, we rendered the automatically and manually identified
TGNs from three example subjects. These included one HCP testing subject
with successful manual TGN identification, one HCP testing subject with
unsuccessful manual TGN identification, and one PPMI testing subject
(healthy control). We also provided a visualization to demonstrate the
effects of the dMRI imaging artifacts and/or noise on the ROI placement in
the HCP testing subject with unsuccessful manual TGN identification.

We then provided a visualization of TGNs to show the anatomical
regions where the TGN passed. We first showed the curated TGN in the
atlas. This was done by rendering a voxel-based fiber density heatmap
that quantifies the number of fibers present in each voxel and the regions
through which the TGN passed on the population-mean T2-weighted
image (used for co-registering the TGN tractography data). We also
showed subject-specific TGNs, by rendering their fiber density heatmaps
and the regions through which the TGN passed on the corresponding
subject T2w images. Three example subjects (the same subjects as used in
the above visual comparison) were used in this visualization.

3. Results

3.1. TGN identification rate

All TGNs were successfully identified using the proposed automated



Table 3
Spatial overlap (wDice score) between automatically (proposed) and manually
identified TGNs.

50 HCP atlas subjects 0.7585 � 0.0883

42 HCP testing subjects(with successful manual identification) 0.7534 � 0.1127
PPMI testing subjects Subject 1 0.7892

Subject 2 0.7887
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identification method in all subjects under study, including the 50 HCP
atlas subjects, the 50 HCP testing subjects (including the 8 subjects where
manual selection failed), and the 40 PPMI testing subjects (Table 2).
Regarding the different subdivisions, the cisternal portion was identified
in all subjects under study. We also obtained relatively high identifica-
tion rates for the mesencephalic trigeminal tract (on average 50.0%) and
spinal trigeminal tract (on average 52.4%) across all 100 HCP subjects,
where the manual selection could successfully identify 34.5% of the
mesencephalic trigeminal tracts and 37.0% of the spinal trigeminal
tracts. For the PPMI data, the identification rates of the mesencephalic
trigeminal and spinal trigeminal tracts using the proposed automated
method were relatively low compared to those in the HCP data.

3.2. TGN spatial overlap

Table 3 gives the mean and the standard deviation of the wDice scores
across the 50 HCP atlas subjects and those of the 42 HCP testing subjects
with successful manual TGN identification. High mean wDice scores, on
average over 0.75, were obtained. The threshold for a good wDice score
to evaluate tract spatial overlap was suggested to be 0.72 according to
Cousineau et al. (2017). Table 3 also gives the wDice scores of the two
PPMI testing subjects with manually selected TGNs, which were about
0.79 for both subjects.

3.3. TGN visualization

Fig. 3 gives a visual comparison between the automatically (pro-
posed) and manually identified TGNs for three example subjects. Highly
visually comparable results were obtained between the two methods for
the two subjects with successful manual identification. Our proposed
method could also successfully identify a visually reasonable TGN on the
subject where manual identification failed. In the testing subject with
unsuccessful manual TGN identification, the skull base region is affected
by imaging artifacts and/or noise, where the predefined ROIs at the
Meckel’s Cave and the cisternal portion were not visually accessible. (To
confirm the anatomical validity of the automatically identified TGN in
the testing subject, we have performed another manual TGN identifica-
tion method that is based on interactivelymoving ROIs. A visualization of
the TGNs is provided in Suppl Fig. 3.)

Fig. 4(a) shows the 3D fiber trajectory and the fiber density map of the
TGN curated in the atlas, overlaid on the population mean T2w image. In
general, the TGN had an anatomically correct shape and corresponded
well to the known anatomy of the TGN pathways, i.e., passing through
the Meckel’s Cave (MC) and overlapping well with the cisternal portion
(CP), as appearing on the T2w image. Fig. 4(b) gives the TGN visuali-
zation of the example HCP subject with successful manual selection. The
TGNs identified using our method were anatomically correct, passing
through the MC and overlapping with the CP as appearing on the T2w
image. Fig. 4(c) renders the identified TGNs from the example HCP
subject with unsuccessful manual selection. In this subject, our obtained
Table 2
TGN identification rate (percentage of successfully identified TGNs) of the overall
(highlighted in gray) and the manual selection method. For the PPMI data, we did n
reported.

Overall

Automated

HCP atlas subjects (n ¼ 50) 100%

HCP testing subjects(n ¼
50)

With successful manual identification(n ¼
42)

100%

With unsuccessful manual identification (n
¼ 8)

100%

PPMI testing subjects (n ¼ 40) 100%
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TGNs are visually anatomically correct in terms of the shape; however,
they do not pass through the MC and do not overlap with the CP as
appearing on the T2w data. This was because the dMRI data of this
subject had imaging artifacts in the skull base region, which affected the
registration with the T2w data at the skull base region. (This also
explained the failure of our attempt to perform manual selection using
ROIs drawn on the T2w data.) Fig. 4(d) displays the TGNs identified from
the example PPMI subject. The identified TGNs were anatomically cor-
rect, passing through the MC and overlapping with the CP as appearing
on the T2w data.

4. Discussion

In this paper, we present a TGN tractography fiber clustering atlas to
enable automated identification of TGN in dMRI tractography from new
subjects. We show not only highly comparable TGN identification per-
formance of our method with comparison to expert TGN identification,
but also several advantages. First, our method performed automated TGN
identification, without required expert ROI placement; thus, it provides
an efficient tool to reduce expert labor costs and inter-operator bias.
Second, our method was robust to potential imaging artifacts and/or
noise and thus obtained a higher successful TGN identification rate. We
have several overall observations about the results, which are discussed
below.

We demonstrated successful application of the TGN atlas for subject-
specific TGN identification, where 100% of the TGNs of all subjects under
study were successfully identified. Importantly, our method could suc-
cessfully identify the TGNs of the 8 HCP testing subjects where manual
TGN selection could not because of failed ROI placement within the MC
and the CP. In our work, we found that manual ROI placement was
affected by imaging artifacts and/or noise at the skull base region from
two aspects. First, ROIs could not be drawn because the anatomical
structures of interest were not visible on the noisy dMRI data. Second,
ROIs from inter-modality imaging (e.g. anantomcal T2w) could not be
applied because of bad image registration at the skull base region. Our
method identified the TGNs from dMRI tractography directly, without
relying on the success of ROI placement. Therefore, our method provided
a robust tool for TGN identification, in spite of the potential imaging
artifacts and/or noise at the skull base region.

We showed the proposed atlas’s high TGN identification performance
despite the heterogeneity of the dMRI data, specifically in the dMRI with
TGN and its subdivisions using the proposed automated identification method
ot perform manual TGN identification; thus, the TGN identification rate was not

TGN cisternal portion Mesencephalic
trigeminal tract

Spinal trigeminal tract

Manual Automated Manual Automated Manual Automated Manual

100% 100% 100% 45.0% 40.0% 59.0% 35.0%

100% 100% 100% 58.3% 34.5% 47.7% 46.4%

0% 100% 0% 37.5% 0% 31.3% 0%

– 100% – 6.9% – 20.0% –



Fig. 3. Visual comparison of the TGN 3D fiber trajectory between the automatically (proposed) and manually identified TGNs. The three example subjects include one
HCP testing subject with successful manual TGN identification, one HCP testing subject with unsuccessful manual TGN identification, and one PPMI testing subject
(healthy control). For the HCP testing subject with unsuccessful manual TGN identification, the b0 and DTI image are distorted, preventing successful placement of the
ROIs in CP and MC.
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relatively low spatial resolution. Our testing data included the dMRI data
from the PPMI database, which was independently acquired using a
different scanning protocol and processed in a different manner
compared to the HCP data. These factors could affect the tractography
results and thus influence the identification generalizations between
different dMRI datasets. However, despite any potential effects from the
heterogeneity of the dMRI data, we showed excellent TGN identification
generalization performance across the multiple testing datasets. One
important contributing factor was the application of the two-tensor UKF
tractography (Malcolm et al., 2010; Reddy and Rathi, 2016) which is
highly sensitive and robust in fiber tracking in dMRI data from different
acquisition protocols.

We demonstrated the anatomical validity of the identified TGN using
the proposed atlas. First, the automatically identified TGNs were highly
comparable to the ground truth manual TGN selection results, where we
showed highly visually similar TGN fiber trajectory and good spatial
overlap. Second, the automatically identified TGNs corresponded well to
8

the known anatomy, passing through the MC and overlapping with the
CP, as appearing on the T2w image. T2w data has a good contrast of the
cisternal portion of the TGN and has been widely used to confirm the
presence of the TGN (Casselman et al., 2008; Xie et al., 2020).

The proposed atlas enabled identification of subdivisions of the TGNs.
The TGN covers an extensive nerve distribution territory, including
several segments such as the cisternal portion, the branching structures,
the mesencephalic trigeminal tract, and the spinal trigeminal tract (Go
et al., 2001; Joo et al., 2014). Unlike the cisternal portion of TGN that has
been studied in multiple previous works, the mesencephalic trigeminal
tract and spinal trigeminal tract are relatively less studied. The spinal
trigeminal tract is important for mapping the pain-temperature sensory
functions of the face, mouth and nose (Grant and Arvidsson, 1975). The
mesencephalic trigeminal tract is an important portion of the TGN that
conveys proprioceptive information from the teeth, masticatory muscles
and temporomandibular joints (Shigenaga et al., 1989). To our knowl-
edge, our recently published work (Xie et al., 2020) demonstrated, for the



Fig. 4. Visualization of the TGN 3D fiber trajectory and the voxel-based fiber density map, overlaid on T2w data. (a) The TGN in the atlas, overlaid on the population
mean T2w image. (b, c) Subject-specific TGNs of the two example HCP subjects, overlaid on the corresponding T2w images. (d) Subject-specific TGNs of the example
PPMI subject (healthy control), overlaid on the corresponding T2w image. For each sub-figure, inset images are provided for better visualization of the regions where
the TGN passes through. The value of a voxel in the heatmaps represents the number of fibers that have fibers passing through the voxel. For visualization of the fiber
density map at the same scale, each map is normalized by the maximal value on the map for each sub-figure.
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first time, the possibility of identification of the putative mesencephalic
trigeminal tract using dMRI tractography techniques, where we have
shown that the highly sensitive fiber tracking UKF algorithm can effec-
tively track through the intra-brainstem region where the mesencephalic
trigeminal tract fibers cross white matter fibers. In the present study,
using the same underlying tractography method, we have shown a better
identification rate using the proposed automated atlas-based method
than previously applied manual selection method. However, while we
showed modestly successful performance on identifying the mesence-
phalic trigeminal tract and spinal trigeminal tract, we noticed that the
identification of these substructures could be affected by the image
quality. In the PPMI data, we found a lower identification rate of these
two tracts compared to the high-quality and high-resolution HCP data.
This result suggested that improving the imaging acquisition would be
helpful for identification of the more comprehensive anatomy of the
TGN.

The proposed atlas-based TGN identification method aimed to
address the known tractography issues of false negative and false positive
fiber tracking (Maier-Hein et al., 2017; Thomas et al., 2014). In our study,
we applied the multi-tensor UKF tractography method that has been
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shown to be highly sensitive tracking in the presence of crossing fibers
and peritumoral edema in the cerebrum (Z. Chen et al., 2015, 2016; Gong
et al., 2018; Hong et al., 2018; Liao et al., 2017; O’Donnell et al., 2017; F.
Zhang, Kahali, et al., 2017; Fan Zhang, Savadjiev, et al., 2018; Fan Zhang,
Wu et al., 2018). The multi-tensor UKF tractography has also been
demonstrated to be highly sensitive in tracking the different anatomical
subdivisions of the TGN (Xie et al., 2020). The high sensitivity has been
suggested to be important to reduce false negatives, but at the expense of
increased false positive fiber tracking (Maier-Hein et al., 2017; Thomas
et al., 2014). Therefore, the multi-tensor UKF fiber tracking method may
introduce more false positive or anatomically incorrect errors compared
to a standard single-fiber diffusion tensor fiber tracking method. In our
method, we included two solutions to remove possible false positive fi-
bers. First, during expert judgment, we excluded the fiber clusters that
were anatomically incorrect to belong to the TGN. For instance, we found
and excluded false positive fiber clusters entering the temporal lobe.
While the expert judgement could reject the entire cluster if the cluster
was not anatomically correct, improbable fibers within a cluster could
not be ameliorated. To handle such tractography errors, we included a
data-driven outlier fiber removal process to reject improbable fibers
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within a cluster.
While the aforementioned two processing steps have largely

ameliorated the issue of false positive fibers, we still found false positive
fibers entering the cerebellar peduncles, e.g., fibers that are parallel to
the middle cerebellar peduncle. (See Suppl Fig. 4 for a graphic illustra-
tion of the false positive fibers entering the cerebellar peduncles). False
positive tracking of the TGN has been reported in several studies, in
particular, false positive streamlines entering the cerebellar peduncles
(Behan et al., 2017; David Q. Chen, DeSouza et al., 2016; David Qixiang
Chen et al., 2011; Hung et al., 2017; Jacquesson et al., 2019; M. Yoshino
et al., 2016). In our previous study that compared different fiber tracking
strategies (dMRI data with different b-values, in combination with both
single- and multi-tensor tractography methods), we have also found that
false positive tracking into the cerebellar peduncle was a large challenge,
as this false positive tracking was present in all datasets even with expert
selection of TGN fibers (Xie et al., 2020). While this issue can be
ameliorated by removing the fiber clusters that have fibers entering the
cerebellar peduncles, unfortunately this strategy will remove a large
number of fibers, reducing the possibility of identifying other structures
such as the cisternal portion and the branching structures. Therefore, we
included these fiber clusters in the curated TGN atlas. We note that there
is a false negative tracking of the fibers that travel towards the trigeminal
sensory nucleus, in particular the chief sensory nucleus; however, the
TGN fibers to the other parts of the trigeminal sensory nucleus including
the spinal nucleus and the mesencephalic nucleus can be identified using
our method. (The trigeminal sensory nucleus is composed of three nuclei
including the chief sensory nucleus, the spinal nucleus and the mesen-
cephalic nucleus (Go et al., 2001; Joo et al., 2014).)

The proposed TGN atlas can be useful in both scientific and clinical
applications. For example, our method provides a useful tool to enable
large-scale population-wise statistical analysis. Many research studies
have suggested that TGNs are important for understanding and/or po-
tential treatment of various neurological disorders such as major
depressive disorder, attention-deficit/hyperactivity disorder and Par-
kinson’s disease (Barz et al., 1997; McGough et al., 2015; Schrader et al.,
2011). To identify disease-population-specific characteristics of the TGNs
compared to healthy controls, statistical group-wise comparison is
needed. Our automated method is efficient and can ensure a highly
reliable population-wise statistical analysis, where TGN identification is
performed in a consistent way across the subjects. Another example
application of our TGN atlas is to identify and locate the vulnerable TGNs
in tumor patients for surgical planning research. In particular, presurgical
visualization of TGN displacement due to tumor/lesion compressions
offers a significant asset to predict the vulnerability of the TGNs in
neurosurgery (Jacquesson et al., 2019). Our atlas can also be useful by
providing a possibility to quantify the spatial CN trajectory deviation
(displacement due to peritumoral effects) from the TGNs of healthy
brains in the atlas. Another potential use of our method is to study TGN
pathologies related to neurovascular conflict, e.g., in trigeminal neural-
gia. Our method uses diffusion MRI tractography, which is sensitive to
water diffusion and fiber myelination but not vessels or arteries. In
combination with other MRI modalities where vessels and arteries are
highly visualized (Donahue et al., 2017; Haller et al., 2016; Kontzialis
and Kocak, 2017), our method can provide an effective tool to separately
identify nerve structures to confirm neurovascular conflict.

Potential limitations of the present study, including suggested future
work to address limitations, are as follows. First, in the present study, we
demonstrated improvement to the manual ROI-based TGN selection
methods on the testing HCP datasets that were affected by imaging arti-
facts and/or noise. To perform consistent processing across subjects and
provide fairly comparable results to the literature, we chose a widely used
method based on predefined manually drawn ROIs within the MC and CP.
For this particular manual selection strategy, ROI placement was affected
by imaging artifacts and/or noise so that TGN selection was not able to be
performed. However, we acknowledge that a manual TGN identification
method that requires more sophisticated processing, e.g., interactively
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moving ROIs (Chamberland et al., 2012; Golby et al., 2011; Fan Zhang
et al., 2020), may also identify the TGNs in these testing datasets (see
Suppl Fig. 3). Second, we demonstrated our method on TGN identification
of subjects with different health conditions, including healthy and Par-
kinson’s disease. A further evaluation could include an investigation of
patients with secondary pathologies that affect the TGN, e.g. trigeminal
neuralgia and neurosurgical patients with skull base tumors. Third, in this
study, we created the TGN atlas using UKF tractography because it has
been demonstrated to be effective in tracking TGNs (Xie et al., 2020). In an
initial experiment, we have shown successful applications of the atlas to
tractography data computed using two additional fiber tracking methods,
including diffusion tensor tractography (Basser et al., 2000) and con-
strained spherical deconvolution (Jeurissen et al., 2011) tractography (see
Supplementary Material S1 for details). An interesting future work could
include a comprehensive comparison to investigate the differences of the
TGNs identified from different tractography methods. Fourth, given the
success in atlas curation of the TGN, as well as the brain white matter (Fan
Zhang,Wu, et al., 2018), we believe that it is highly feasible and promising
to leverage our fiber clustering techniques for atlas curation of other cra-
nial nerves, which is interesting further work to be investigated. Fifth, a
more comprehensive assessment of the automatically identified TGNfibers
could include a comparison to advanced CISS or FIESTA data that can
provide better visualization of the cisternal portion of the TGN. However,
due to the unavailability of such advanced data in the HCP and PPMI
datasets under study, we chose to use the T2w data that provide reason-
ably good contrast of the cisternal portion of the TGN and have been
widely used to confirm the presence of the TGN (Casselman et al., 2008;
Xie et al., 2020).

5. Conclusions

In this paper, we have presented a novel dMRI tractography fiber
clustering atlas that enables automated identification of the TGN of new
subjects. Experimental results show successful application of the pro-
posed atlas to dMRI data with different MRI acquisition protocols and
demonstrate advantages over a traditional manual selection strategy.
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